Asymptotic oracle properties of SCAD-penalized least squares estimators
نویسندگان
چکیده
We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this estimator for simultaneous variable selection and estimation. We show that under appropriate conditions, the SCAD-penalized least squares estimator is consistent for variable selection and that the estimators of nonzero coefficients have the same asymptotic distribution as they would have if the zero coefficients were known in advance. Simulation studies indicate that this estimator performs well in terms of variable selection and estimation.
منابع مشابه
Regularization of Wavelet Approximations
In this paper, we introduce nonlinear regularized wavelet estimators for estimating nonparametric regression functions when sampling points are not uniformly spaced. The approach can apply readily to many other statistical contexts. Various new penalty functions are proposed. The hard-thresholding and soft-thresholding estimators of Donoho and Johnstone are speci c members of nonlinear regular...
متن کاملPenalized Regression Models with Autoregressive Error Terms
Penalized regression methods have recently gained enormous attention in statistics and the field of machine learning due to their ability of reducing the prediction error and identifying important variables at the same time. Numerous studies have been conducted for penalized regression, but most of them are limited to the case when the data are independently observed. In this paper, we study a ...
متن کاملSparsity oracle inequalities for the Lasso
This paper studies oracle properties of !1-penalized least squares in nonparametric regression setting with random design. We show that the penalized least squares estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of the number of non-zero components of the oracle vector. The results are valid even when the dimension of the model is (much) larger than the sample size and t...
متن کاملPenalized least squares for single index models
The single index model is a useful regression model. In this paper, we propose a nonconcave penalized least squaresmethod to estimate both the parameters and the link function of the single index model. Compared to other variable selection and estimation methods, the proposed method can estimate parameters and select variables simultaneously.When the dimension of parameters in the single indexm...
متن کاملSCAD-Penalized Regression in High-Dimensional Partially Linear Models
We consider the problem of simultaneous variable selection and estimation in partially linear models with a divergent number of covariates in the linear part, under the assumption that the vector of regression coefficients is sparse. We apply the SCAD penalty to achieve sparsity in the linear part and use polynomial splines to estimate the nonparametric component. Under reasonable conditions, i...
متن کامل